

**Aromatization of Hantzsch 1,4-Dihydropyridine with
Bismuth(III) Chloride Supported onto Wet HZSM-5 Zeolite
under Microwave Irradiation in Solventless System**

Majid M. Heravi^{a,*} and Mitra Ghassemzadeh^b

^aDepartment of Chemistry, School of Sciences, Az Zahra University, Vanak, Tehran, Iran

^bChemistry & Chemical Engineering Research Center of Iran, Tehran, Iran

Abstract: Hantzsch 1,4-dihydropyridines (1,4 DHPs) can be aromatized to pyridines by bismuth(III) chloride supported onto wet HZSM-5 zeolite under microwave irradiation in high yields and short time.

Introduction:

Aromatization of Hantzsch 1,4-dihydropyridines has attracted much attention due to the fact that some of them are hypertensive drugs (Ca^{2+} channel blockers)¹ and they can be oxidatively converted to pyridine derivatives by the action of cytochrome P-450 in the liver. The reaction has also been used to investigate the NADH redox processes². Further more the oxidation of Hantzsch 1,4-DHPs is a common and easy way to pyridine derivatives.

Consequently, this oxidation reaction continues to attract the attention of synthetic organic chemists for the introduction of milder, faster and eco-friendly protocols applicable to a wide range of 1,4-dihydropyridines.

So far several oxidizing agents and variety methods have been reported in literature³. Each method has its merits and drawbacks. However the aromatization reaction with most of these methods lead to dealkylation at the 4-position or formation of side products⁴.

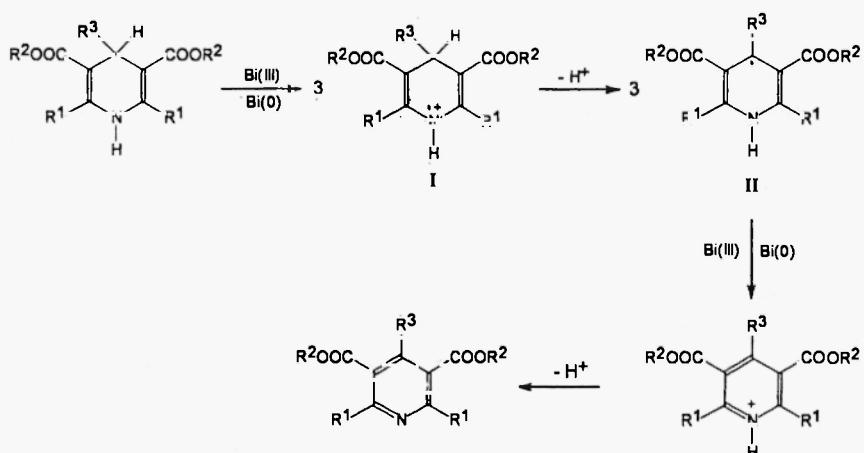
Bismuth compounds are environmentally friendly reagents for organic synthesis⁵. They are relatively nontoxic, readily available, inexpensive and fairly insensitive to small amounts of water⁶. The biochemistry⁷, toxicology⁸ and environmental effects of bismuth compounds have been well documented and show that they are attractive candidates for use in green chemistry.

Prompted by stringent environment protection laws in recent years there has been increasing emphases on the use and design of eco-friendly reagents, solid and solvent free reactions⁹. Application of microwave heating technique is currently under intensive examination¹⁰. Dry technique has attracted much attention recently since organic solvents are expensive and hazardous and open vessels can be used¹¹. Due to importance of Hantzsch 1,4 dihydropyridine advantages of bismuth compounds and merits of coupling of microwave irradiation with dry technique, in this communication we wish to report our results on an expeditious supported $BiCl_3$ mediated oxidation 1,4-dihydropyridine.

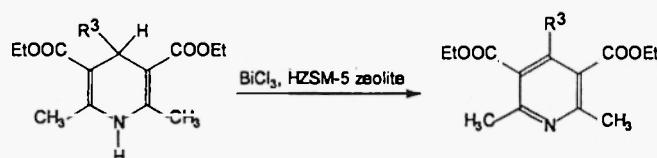
*Corresponding author. E-mail: mmheravi@azzahra.ac.ir

Results and Discussion

The reagent impregnated on solid supports, especially that are efficient in dry media have gained popularity in organic synthesis because of their selectivity and ease of manipulation. During the course of the study of organic reaction in solvent-free conditions, we have observed the usefulness of HZSM-5 zeolite¹² and microwave irradiation in enhancing of the reaction^{11a,13}. In connection with these observations, we became interest in developing a rapid and eco-friendly conditions to effect 1,4-dihydropyridines to pyridines conversion under microwave irradiation in solventless system. Our initial attempts to induce oxidation of the simple Hantzsch 1,4-dihydropyridine as a test case with (R=H) and bismuth chloride under microwave irradiation and without solvent was not very promising as considerable amounts of starting material was recovered unchanged even after relatively long reaction period, up to 10 min. However, when BiCl₃ was supported onto equal amount of HZSM-5 zeolite and make the mixture wet by addition of few drops of water, under microwave irradiation, the oxidation was performed rapidly (2 min) in the case oxidation of 1 (R=H). It is noteworthy to mention that in the absence of water the reaction is sluggish. To establish the generality of the method a variety of 1,4-dihydropyridine 1-12 were oxidized under similar conditions (Table I).


The salient features of this reaction are mild reaction conditions, short time, eco-friendly conditions, excellent yields and best of all is the stability of the substituents at 4-position which are normally dialkylated during aromatization by existing methods ie, oxidant such as KMnO₄¹⁴ and MnO₄¹⁵. In addition BiCl₃ does not show the disadvantage of giving nitrated side product observed in the reaction with bismuth(III) nitrate¹⁶.

Presumably, the oxidation of 1,4-dihydropyridine is initiated by a three electron transfer to Bi(III) to produce Bi⁰. A radical cation I which subsequently loses a proton to afford a radical II. The second mole of Bi(III) then oxidizes radical II to the protonated pyridine III. At the end, the pyridinium species III loses a proton to give the corresponding pyridine derivative (Scheme 1).


In summary, we have found BiCl₃ supported onto HZSM-5 zeolite can serve as a mild and clean oxidant under microwave irradiation in solvent free conditions for aromatization of 1,4-dihydropyridines to pyridines in high yield, giving the additional benefit of easy work up and eco-friendly conditions.

Experimental Section

All of dihydropyridines were prepared in the same manner, using the appropriate aldehyde, ammonia and ethyl acetoacetate. All compounds were known and identified by comparison of their spectra with those authentic samples.

Scheme 1

Table I. Aromatization of Hantzsch 1,4-dihydropyridines with BiCl_3 supported onto HZSM-5 zeolite under microwave irradiation in solventless system.

Entry	R	Reaction time	Yield ^a	Mp		
				(sec)	(%) observed	(°C) reported
1	H	180	92		68-9	70-1 ¹⁷
2	CH ₃	120	90		Oil	Oil ¹⁸
3	CH ₃ CH ₂ CH ₃	120	65		Oil	Oil ¹⁸
4	(CH ₃) ₂ CH	120	77		69-70	69-70 ¹⁷
5		180	87		61-2	62-3 ¹⁷
6	4-Cl-C ₆ H ₄	180	82		65-6	66-7 ¹⁷
7	2-NO ₂ -C ₆ H ₄	180	80		75-6	75 ¹⁹
8	3-NO ₂ -C ₆ H ₄	270	81		62-3	61-3 ¹⁷
9	4-NO ₂ -C ₆ H ₄	210	80		114-5	114-6 ¹⁷
10	4-CH ₃ O-C ₆ H ₄	120	78		49-50	50 ²⁰
11	2-furyl	120	85		oil	Oil ¹⁹

^aYields refer to isolated pure product. Products exhibited physical and spectral properties in accordance with the assigned structure.

Oxidation of Dihydropyridines. General procedure. Bismuth(III) chloride (1 mmol) was mixed thoroughly with HZSM-5 zeolite (0.5 g). The appropriate Hantzsch

1,4-dihydropyridine was added to the above reagent in a beaker and mixed thoroughly using a spatula. The beaker was placed in microwave oven and irradiated for the specified time (Table I). After completion of the reaction (monitored by TLC) chloroform was added and filtered off. The filtrate was evaporated to dryness and the residue was crystallized from ethanol to afford the corresponding pyridine (Table I).

Caution. Although we did not have any accident during this work, use of microwave oven in an efficient hood is highly recommended.

Acknowledgements

Partial financial support from research council of Azzahra University is appreciated.

References

- [1] a) Bocker RH & Guengerich FP, *J Med Chem* 29, **1986**, 1596.
b) Guengerich FP, Brian WR, Iwasaki M, Sari MA, Baarnhielm C & Bernlsson P *J Med Chem* 34, **1991** 1838.
- [2] Gordeev MF, Patel DV & Gordon EM, *J Org Chem* 61, **1996**, 924.
- [3] Varma RS & Kumar D, *Tetrahedron Lett* 40 **1999**, 21.
b) Memarian HR, Sadeghi MM & Momeni AR, *Synth Commun* 31, **2001**, 2241.
- [4] a) Van den Eynde JJ, D'Orazio R & Yves Van H, *Tetrahedron* 50, **1994**, 2479.
b) Van den Eynde JJ, Mayence A & Maquestiau A, *Tetrahedron* 48, **1992**, 463
c) Tajbakhsh M, Heravi MM, Hosseini A & Shahrezaiee A, *Phosphorus, Sulfur and Silicon* 178, **2003**, 773.
- [5] Suzuki H, Ikegami T & Matano Y, *Synthesis* **1997**, 249.
- [6] Nattier BA, Eash KJ & Mehan RS, *Synthesis* 2, **2001**, 1010.
- [7] Dill K & Mc Green EL, *Chemistry of Organic Arsenic, Antimony and Bismuth Compounds*, edited by S. Patai, John Wiley, New York, **1994**, pp 695-713.
- [8] Worsner U & Nir L, *Ibid*, **1994**, pp 715-723.
- [9] Khouv CB, Parth C, Lalenger JA & Davis ME, *J Catal* 149, **1994**, 195.
- [10] Caddick S, *Tetrahedron* 51, **1995**, 10403 and references cited therein.
- [11] a) Heravi MM, Ajami D, Aghapoor K & Ghassemzadeh M, *Chem Commun* **1999**, 833
b) Heravi MM, Ajami D, Mojtabaei MM & Ghassemzadeh M, *Tetrahedron Lett* 40, **1999**, 561.
- [12] HZSM-5 zeolite was prepared by calcination of NH₄ZSM-5 zeolite at 500°C for 8hrs. Si:Al= 40:1 and pore diameters are 5.1 x 5.5 Å. We are grateful to Dr. A.R. Garakani for a gift of zeolite.
- [13] Heravi MM, Ajami D, Mohajerani B, Tabar-Hydar K & Ghassemzadeh M, *Synth Commun* 32, **2002**, 3325.
- [14] Van den Eynde JJ, D'Orazio R & Yves van H, *Tetrahedron* 50, **1994**, 2479.
- [15] Delgado F, Alvarez C, Garcia O, Penieres G & Marquez C, *Synth Commun* 21, **1991**, 2137.
- [16] Marquez SH & Karnik MA, *Synthesis* **1998**, 713.
- [17] Van den Eynde JJ, Delfasse F, Majence A & Van Haverleene Y, *Tetrahedron* 51, **1995**, 6511.
- [18] Loer B & Snader KM, *J Org Chem* 30, **1965**, 1914.
- [19] Henkel LE, Ayling EE & Margan WH, *J Chem Soc* **1931**, 1835.
- [20] Emmert D, Diefenbach E & Eck R, *Ber* **1927**, 2220.

Received on May 10, 2004.